$
\newcommand\vu{\mathbf{u}}
\newcommand\vv{\mathbf{v}}
\newcommand\vw{\mathbf{w}}
\newcommand\vi{\mathbf{i}}
\newcommand\vj{\mathbf{j}}
\newcommand\vk{\mathbf{k}}
\newcommand\vo{\mathbf{o}}
\newcommand\vr{\mathbf{r}}
\newcommand\vt{\mathbf{t}}
\newcommand\vx{\mathbf{x}}
\newcommand\vy{\mathbf{y}}
\newcommand\vz{\mathbf{z}}
\newcommand\va{\mathbf{a}}
\newcommand\vb{\mathbf{b}}
\newcommand\vc{\mathbf{c}}
\newcommand\ve{\mathbf{e}}
\newcommand{\vE}{\mathbf{E}}
\newcommand{\vS}{\mathbf{S}}
\newcommand{\vk}{\mathbf{k}}
\newcommand{\vq}{\mathbf{q}}
\newcommand{\vzero}{\mathbf{0}}
\newcommand{\vomega}{\mathbf{ω}}
\newcommand{\mI}{\mathbf{I}}
\newcommand{\mM}{\mathbf{M}}
\newcommand{\mR}{\mathbf{R}}
\newcommand{\mP}{\mathbf{P}}
\newcommand{\mK}{\mathbf{K}}
\newcommand{\mW}{\mathbf{W}}
\DeclareMathOperator{\Tr}{Tr}
\newcommand{\abs}[1]{\left\lvert {#1} \right\rvert}
\newcommand{\norm}[1]{\left\lVert {#1} \right\rVert}
\newcommand{\ensemble}[1]{\left\langle {#1} \right\rangle}
\newcommand{\der}[2]{\frac{\partial {#1}}{\partial {#2}}}
\newcommand{\Der}[2]{\frac{\delta {#1}}{\delta {#2}}}
\newcommand{\lap}{\nabla^2}
$
(To be updated)
This is a tutorial on how to identify triple junctions in polycrystalline materials using OVITO modifiers and TripleJunction.py
Getting started
First, we import OVITO python package which are necessary for identifying unique grains.